millions-night-34157
06/19/2024, 8:17 AMError 1: Code: ParameterNotBound, Node Id: n1, Description: Parameter not bound [events_per_day_paths].
Error 2: Code: ParameterNotBound, Node Id: n1, Description: Parameter not bound [output_path].
ancient-wolf-19325
06/19/2024, 8:17 AMevents_per_day_paths
and output_path
are not bound to any task invocation in the workflow. This typically happens when the workflow definition does not correctly pass these parameters to the tasks that require them.
Would you like more detail on how to resolve this issue?
Sources:
- Flyte Discussion on Parameter Binding
- Flyte Issue on Parameter Binding 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/23/2024, 9:14 PMancient-wolf-19325
06/23/2024, 9:14 PMconfig
is expected to be a simple string (simple:STRING
), but it is being provided as a collection of strings (collection_type:{simple:STRING}
). This usually happens when a list or array is passed to a task or workflow expecting a single string.
To resolve this, ensure that the config
variable is correctly defined and passed as a single string. Here is an example of how to correct this in a Flyte workflow:
from flytekit import task, workflow
@task
def process_config(config: str) -> str:
# Process the config string
return config
@workflow
def my_workflow(config: str) -> str:
result = process_config(config=config)
return result
Make sure that when you call the workflow, you pass a single string, not a list of strings.
Would you like more detail on this?
Sources:
- Flyte Discussion on Type Mismatch
- Flyte Issue on Type Mismatch 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/23/2024, 9:22 PMdef sub_workflow(date: str, config: Config) -> str:
input_paths = [config.path_1, config.path_2]
task_output = my_task(paths: input_paths)
return task_output
I get this error while running the "sub_workflow" via "main" workflow
Error 0: Code: MismatchingTypes, Node Id: n1, Description: Variable [config] (type [collection_type:{simple:STRING}]) doesn't match expected type [simple:STRING].
ancient-wolf-19325
06/23/2024, 9:22 PMconfig
parameter in the sub_workflow
is expected to be a simple string, but it is being passed as an object of type Config
. To resolve this, ensure that the Config
class is properly defined and used in both the main
and sub_workflow
.
Here is an example of how to correctly define and use the Config
class in Flyte workflows:
1. Define the Config
class:
from dataclasses import dataclass
from flytekit import task, workflow
@dataclass
class Config:
path_1: str
path_2: str
2. Define the sub_workflow
:
@workflow
def sub_workflow(date: str, config: Config) -> str:
input_paths = [config.path_1, config.path_2]
task_output = my_task(paths=input_paths)
return task_output
3. Define the main
workflow:
@workflow
def main_workflow(date: str) -> str:
config = Config(path_1="path/to/file1", path_2="path/to/file2")
result = sub_workflow(date=date, config=config)
return result
4. Define the task:
@task
def my_task(paths: list[str]) -> str:
# Process the paths
return "processed"
Ensure that the Config
object is correctly passed from the main_workflow
to the sub_workflow
and that the sub_workflow
is expecting a Config
object, not a simple string.
Would you like more detail on this?
Sources:
- Flyte Discussion on Type Mismatch
- Flyte Issue on Type Mismatch 👍 1 button 👎 0 button 💡 Hint: Mention @ancient-wolf-19325 in the thread for followups.millions-night-34157
06/24/2024, 12:46 PMSPARK_SESSION not available as a parameter in Flyte context - are you in right task-type?
ancient-wolf-19325
06/24/2024, 12:46 PMSpark
task type and that the Spark session is correctly accessed within the task.
Here is how you can configure and access the Spark session in a Flyte task:
1. Import necessary modules:
from flytekit import task, workflow
from flytekitplugins.spark import Spark
from flytekit.types.schema import FlyteSchema
from pyspark.sql import SparkSession
2. Define the task with Spark configuration:
@task(
task_config=Spark(
spark_conf={
"spark.driver.memory": "1000M",
"spark.executor.memory": "1000M",
"spark.executor.cores": "1",
"spark.executor.instances": "2",
"spark.driver.cores": "1",
}
),
cache_version="1"
)
def spark_task() -> FlyteSchema:
# Access the Spark session from the Flyte context
spark = flytekit.current_context().spark_session
# Use the Spark session to perform operations
df = spark.read.format("csv").option("header", "true").load("path/to/csv")
return df
3. Define the workflow:
@workflow
def my_workflow() -> FlyteSchema:
return spark_task()
Ensure that you are running this in a configured Flyte environment with Spark backend support. If you are running this locally, make sure that the Flyte environment is correctly set up to support Spark tasks.
Would you like more detail on this?
Sources:
- Flyte Discussion on Spark Session
- Flyte Issue on Spark Session 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/24/2024, 3:05 PMancient-wolf-19325
06/24/2024, 3:05 PMflytekit.testing
module to create mock tasks and workflows. Here is an example of how to mock a FileSensor
for unit testing:
1. Import necessary modules:
import pytest
from flytekit import task, workflow
from flytekit.testing import task_mock
from flytekit.sensor.file_sensor import FileSensor
2. Define the FileSensor
and tasks:
@task
def process_file(file_path: str) -> str:
# Process the file
return f"Processed {file_path}"
@workflow
def my_workflow(file_path: str) -> str:
sensor = FileSensor(name="test_file_sensor")
sensor(file_path=file_path)
return process_file(file_path=file_path)
3. Create a test function to mock the FileSensor
:
@pytest.mark.parametrize("file_path", ["path/to/file.txt"])
def test_my_workflow(file_path):
with task_mock(FileSensor) as mock_sensor:
mock_sensor.return_value = file_path
result = my_workflow(file_path=file_path)
assert result == f"Processed {file_path}"
This setup allows you to mock the FileSensor
and test the workflow without needing an actual file to be present. The task_mock
context manager is used to mock the sensor's behavior and return a predefined file path.
Would you like more detail on this?
Sources:
- Flyte Unit Testing Discussion 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/25/2024, 3:21 PMancient-wolf-19325
06/25/2024, 3:21 PMtest_my_workflow
using the @patch
or @flyte_patch
annotations instead of the with
clause, you can use the flytekit.testing.patch
decorator. Here is how you can do it:
1. Import necessary modules:
import pytest
from flytekit import task, workflow
from flytekit.testing import patch
from flytekit.sensor.file_sensor import FileSensor
2. Define the FileSensor
and tasks:
@task
def process_file(file_path: str) -> str:
# Process the file
return f"Processed {file_path}"
@workflow
def my_workflow(file_path: str) -> str:
sensor = FileSensor(name="test_file_sensor")
sensor(file_path=file_path)
return process_file(file_path=file_path)
3. Create a test function using the @patch
decorator:
@patch(FileSensor)
def test_my_workflow(mock_sensor, file_path="path/to/file.txt"):
mock_sensor.return_value = file_path
result = my_workflow(file_path=file_path)
assert result == f"Processed {file_path}"
This setup uses the @patch
decorator from flytekit.testing
to mock the FileSensor
and test the workflow. The mock_sensor
parameter in the test function is the mock object for the FileSensor
.
Would you like more detail on this?
Sources:
- Flyte Mocking Tasks
- Flytekit Testing 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/25/2024, 4:51 PMancient-wolf-19325
06/25/2024, 4:51 PMtask_mock
and @patch
utilities in Flyte are designed to mock Flyte tasks, workflows, or reference entities, but not sensors directly. To mock sensors, you need to mock the underlying functionality that the sensor relies on, such as file existence checks or other I/O operations.
Here is an example of how to mock a FileSensor
by patching the method that checks for file existence:
1. Import necessary modules:
import pytest
from unittest.mock import patch
from flytekit import task, workflow
from flytekit.sensor.file_sensor import FileSensor
2. Define the FileSensor
and tasks:
@task
def process_file(file_path: str) -> str:
# Process the file
return f"Processed {file_path}"
@workflow
def my_workflow(file_path: str) -> str:
sensor = FileSensor(name="test_file_sensor")
sensor(file_path=file_path)
return process_file(file_path=file_path)
3. Create a test function using the unittest.mock.patch
decorator:
@patch("flytekit.sensor.file_sensor.FileSensor._check_file_exists")
def test_my_workflow(mock_check_file_exists):
file_path = "path/to/file.txt"
mock_check_file_exists.return_value = True # Mock the file existence check to always return True
result = my_workflow(file_path=file_path)
assert result == f"Processed {file_path}"
In this example, the @patch
decorator is used to mock the _check_file_exists
method of the FileSensor
class. This allows you to simulate the behavior of the file sensor without needing an actual file.
Would you like more detail on this?
Sources:
- Flyte Mocking Tasks
- Flytekit Testing 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/25/2024, 7:43 PMList[str]
type argument?ancient-wolf-19325
06/25/2024, 7:43 PMList[str]
type argument:
1. Define the task:
from flytekit import task
@task
def process_files(file_paths: list[str]) -> int:
# Process the list of file paths
return len(file_paths)
2. Define the workflow:
from flytekit import workflow
@workflow
def my_workflow(file_paths: list[str]) -> int:
return process_files(file_paths=file_paths)
3. Run the workflow:
if __name__ == "__main__":
result = my_workflow(file_paths=["path/to/file1.txt", "path/to/file2.txt"])
print(f"Number of files processed: {result}")
Ensure that the input to the process_files
task is a list of strings. If the input is incorrectly passed as a dictionary, Flyte will raise the "AttributeError: 'list' object has no attribute 'items'" error.
If you continue to encounter the issue, please provide more details about the task and workflow definitions, as well as the input being passed.
Would you like more detail on this?
Sources:
- Flyte Issue on Type Mismatch
- Flyte Discussion on Type Mismatch 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/27/2024, 3:13 PMancient-wolf-19325
06/27/2024, 3:13 PMname
parameter in the task decorator. This allows you to assign a more descriptive and user-friendly name to the task, which can be useful for better identification and management.
Here is an example of how to define a Flyte task with a custom name:
1. Import necessary modules:
from flytekit import task, workflow
2. Define the task with a custom name:
@task(name="custom_task_name")
def my_task(input_str: str) -> str:
return f"Processed {input_str}"
3. Define the workflow:
@workflow
def my_workflow(input_str: str) -> str:
return my_task(input_str=input_str)
4. Run the workflow:
if __name__ == "__main__":
result = my_workflow(input_str="example")
print(result)
In this example, the task my_task
is given the custom name custom_task_name
.
Would you like more detail on this?
Sources:
- Flyte Discussion on Custom Task Names
- Flyte Issue on Custom Task Names 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/27/2024, 3:14 PMancient-wolf-19325
06/27/2024, 3:14 PMflytekit.current_context()
, which contains various metadata, including the task's name.
Here is an example of how to print the custom name of the task when it is running:
1. Import necessary modules:
from flytekit import task, workflow, current_context
2. Define the task with a custom name and print the name:
@task(name="custom_task_name")
def my_task(input_str: str) -> str:
ctx = current_context()
print(f"Running task: {ctx.task_name}")
return f"Processed {input_str}"
3. Define the workflow:
@workflow
def my_workflow(input_str: str) -> str:
return my_task(input_str=input_str)
4. Run the workflow:
if __name__ == "__main__":
result = my_workflow(input_str="example")
print(result)
In this example, the task my_task
is given the custom name custom_task_name
, and the task's name is printed when the task is running.
Would you like more detail on this?
Sources:
- Flyte Context
- Flyte Discussion on Custom Task Names 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.millions-night-34157
06/27/2024, 3:16 PMTypeError: task() got an unexpected keyword argument 'name'
ancient-wolf-19325
06/27/2024, 3:16 PMtask
decorator does not accept a name
parameter directly. Instead, you can use the with_overrides
method to set a custom name for the task.
Here is how you can define a task with a custom name using the with_overrides
method:
1. Import necessary modules:
from flytekit import task, workflow, current_context
2. Define the task:
@task
def my_task(input_str: str) -> str:
ctx = current_context()
print(f"Running task: {ctx.task_name}")
return f"Processed {input_str}"
3. Define the workflow and use with_overrides
to set the custom task name:
@workflow
def my_workflow(input_str: str) -> str:
custom_named_task = my_task.with_overrides(name="custom_task_name")
return custom_named_task(input_str=input_str)
4. Run the workflow:
if __name__ == "__main__":
result = my_workflow(input_str="example")
print(result)
In this example, the my_task
task is given the custom name custom_task_name
using the with_overrides
method, and the task's name is printed when the task is running.
Would you like more detail on this?
Sources:
- Flyte Discussion on Custom Task Names 👍 0 button 👎 0 button 💡 Hint: Mention @runllm in the thread for followups.