better-market-70367
05/02/2024, 2:50 PMfrom flytekit import task, workflow, dynamic
import pandas as pd
import os
import pandas as pd
from itertools import combinations
from typing import List
from flytekit import task, workflow, dynamic
#Function to read CSV files and perform transformations
@task
def read_and_transform_csv(file_path: str, selected_columns: List[str]) -> pd.DataFrame:
df = pd.read_csv(file_path, usecols=selected_columns)
return df
# Function to replace empty cells in specified columns
@task
def replace_empty_cells(df: pd.DataFrame, columns: List[str], replace_value='EMPTY') -> pd.DataFrame:
for col in columns:
df[col].fillna(replace_value, inplace=True)
return df
# Function to generate combinations of group by parameters
@task
def generate_group_by_combinations(group_by_columns: List[str]) -> List[List[str]]:
group_by_combinations = []
for r in range(1, len(group_by_columns) + 1):
group_by_combinations.extend(combinations(group_by_columns, r))
return group_by_combinations
# Function to apply SQL-like transformations and aggregation
@task
def apply_sql_transformations(df: pd.DataFrame) -> pd.DataFrame:
# Add savings_present column
df['S_PRESENT'] = df['S_ID'].notnull().astype(int)
# Extract year and month from transaction_date
df['TRANSACTION_YEAR_MONTH'] = df['T'].str.slice(0, 7)
return df
@workflow
# Main function
def wf1(csv1_path: str='/home/ubuntu/flyte/my_project/workflows/ODS_TRANSACTIONS.csv',
csv2_path: str='/home/ubuntu/flyte/my_project/workflows/ods_customers.csv',
csv1_columns: List[str]=['A', 'P', 'T', 'CE', 'AMT'],
csv2_columns: List[str]=['A', 'S_ID'],
group_by_columns: List[str]=['P', 'S_PRESENT', 'C', 'TRANSACTION_YEAR_MONTH']) -> dict:
# Read and transform CSV files
df1 = read_and_transform_csv(file_path=csv1_path, selected_columns=csv1_columns)
df2 = read_and_transform_csv(file_path=csv2_path, selected_columns=csv2_columns)
# Merge dataframes
merged_df = pd.merge(df1, df2, on='A', how='left')
# Apply SQL-like transformations
transformed_df = apply_sql_transformations(df=merged_df)
# Define group by columns
#group_by_columns = ['PRODUCT_TYPE', 'SAVINGS_PRESENT', 'CATEGORY_NAME', 'TRANSACTION_YEAR_MONTH']
# Replace empty cells with 'EMPTY'
transformed_df = replace_empty_cells(df=transformed_df,columns=group_by_columns, replace_value='EMPTY')
# Generate all possible combinations of group by parameters
group_by_combinations = generate_group_by_combinations(group_by_columns=group_by_columns )
# Dictionary to store result dataframes with their names
result_dfs = {}
# Perform group by and aggregation
for idx, group_by_cols in enumerate(group_by_combinations):
result_df = transformed_df.groupby(list(group_by_cols)).agg({
'AMT': ['sum', 'mean'],
'A': 'nunique'
}).reset_index()
# Rename columns as needed
result_df.columns = ['_'.join(col).strip() for col in result_df.columns.values]
# Name for the dataframe
df_name = f"result{idx + 1}"
# Store dataframe in the dictionary
result_dfs[df_name] = result_df
return result_dfs
proud-answer-87162
05/02/2024, 3:24 PM# Perform group by and aggregation
to a new taskwonderful-pizza-65944
05/02/2024, 4:39 PMfreezing-airport-6809
# Merge dataframes
merged_df = pd.merge(df1, df2, on='A', how='left')
OR
# Dictionary to store result dataframes with their names
result_dfs = {}
# Perform group by and aggregation
for idx, group_by_cols in enumerate(group_by_combinations):
result_df = transformed_df.groupby(list(group_by_cols)).agg({
'AMT': ['sum', 'mean'],
'A': 'nunique'
}).reset_index()
# Rename columns as needed
result_df.columns = ['_'.join(col).strip() for col in result_df.columns.values]
# Name for the dataframe
df_name = f"result{idx + 1}"
# Store dataframe in the dictionary
result_dfs[df_name] = result_df
Should be moved to tasks.better-market-70367
05/02/2024, 7:03 PMfrom flytekit import task, workflow
import pandas as pd
from itertools import combinations
from typing import List
from typing import Union
# Function to read CSV files and perform transformations
@task
def read_and_transform_csv(file_path: str, selected_columns: List[str]) -> pd.DataFrame:
df = pd.read_csv(file_path, usecols=selected_columns)
# Perform transformations here if needed
return df
@task
def replace_empty_cells(df: pd.DataFrame, columns: List[str], replace_value: Union[str, int, float] = 'EMPTY') -> pd.DataFrame:
for col in columns:
df[col].fillna(replace_value, inplace=True)
return df
# Function to generate combinations of group by parameters
@task
def generate_group_by_combinations(columns):
group_by_combination = []
for r in range(1, len(columns) + 1):
group_by_combination.extend([list(comb) for comb in combinations(columns, r)])
return group_by_combination
# Function to apply SQL-like transformations and aggregation
@task
def apply_sql_transformations(df: pd.DataFrame) -> pd.DataFrame:
# Add savings_present column
df['SAVINGS_PRESENT'] = df['SAVINGS_ACCOUNT_ID'].notnull().astype(int)
# Extract year and month from transaction_date
df['TRANSACTION_YEAR_MONTH'] = df['TRANSACTION_DATE'].str.slice(0, 7)
return df
# Task to merge two dataframes
@task
def merge_dataframes(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:
return pd.merge(df1, df2, on='ACCOUNT_ID', how='left')
# Task to perform group by and aggregation for a single combination
@task
def group_by_and_aggregate_single(df: pd.DataFrame, group_by_cols: List[str]) -> pd.DataFrame:
result_df = df.groupby(group_by_cols).agg({
'AMOUNT': ['sum', 'mean'],
'ACCOUNT_ID': 'nunique'
}).reset_index()
result_df.columns = ['_'.join(col).strip() for col in result_df.columns.values]
return result_df
# Task to iterate over all group by combinations and aggregate
@task
def iterate_and_aggregate(group_by_combinationss: List[List[str]], transformed_df: pd.DataFrame) -> dict:
result_dfs = {}
for idx, group_by_cols in enumerate(group_by_combinationss):
grouped_df = group_by_and_aggregate_single(transformed_df, list(group_by_cols))
result_dfs[f"result{idx + 1}"] = grouped_df
return result_dfs
# Main workflow
@workflow
def wf1(csv1_path: str='/home/ubuntu/flyte/my_project/workflows/ODS_TRANSACTIONS.csv',
csv2_path: str='/home/ubuntu/flyte/my_project/workflows/ods_customers.csv',
csv1_columns: List[str]=['ACCOUNT_ID', 'PRODUCT_TYPE', 'TRANSACTION_DATE', 'CATEGORY_NAME', 'AMOUNT'],
csv2_columns: List[str]=['ACCOUNT_ID', 'SAVINGS_ACCOUNT_ID'],
group_by_columns: List[str]=['PRODUCT_TYPE', 'SAVINGS_PRESENT', 'CATEGORY_NAME', 'TRANSACTION_YEAR_MONTH']) -> dict:
# Read and transform CSV files
df1 = read_and_transform_csv(file_path=csv1_path, selected_columns=csv1_columns)
df2 = read_and_transform_csv(file_path=csv2_path, selected_columns=csv2_columns)
# Merge dataframes
merged_df = merge_dataframes(df1=df1, df2=df2)
# Apply SQL-like transformations
transformed_df = apply_sql_transformations(df=merged_df)
# Replace empty cells with 'EMPTY'
transformed_df = replace_empty_cells(df=transformed_df, columns=group_by_columns, replace_value='EMPTY')
# Generate all possible combinations of group by parameters
group_by_combinations = generate_group_by_combinations(columns=group_by_columns)
# Perform group by and aggregation for all combinations
result_dfs = iterate_and_aggregate(group_by_combinationss=group_by_combinations, transformed_df=transformed_df)
return result_dfs
if __name__ == "__main__":
result_dataframes = wf1()
print(result_dataframes)
better-market-70367
05/02/2024, 7:03 PMerrror
AssertionError: Error encountered while executing 'wf1':
Failed to Bind variable group_by_combinationss for function test7.iterate_and_aggregate.
freezing-airport-6809
freezing-airport-6809
# Merge dataframes
merged_df = merge_dataframes(df1=df1, df2=df2)
# Apply SQL-like transformations
transformed_df = apply_sql_transformations(df=merged_df)
# Replace empty cells with 'EMPTY'
transformed_df = replace_empty_cells(df=transformed_df, columns=group_by_columns, replace_value='EMPTY')
# Generate all possible combinations of group by parameters
group_by_combinations = generate_group_by_combinations(columns=group_by_columns)
# Perform group by and aggregation for all combinations
result_dfs = iterate_and_aggregate(group_by_combinationss=group_by_combinations, transformed_df=transformed_df)
return result_dfs
freezing-airport-6809
freezing-airport-6809
@workflow
def wf1(csv1_path: str='/home/ubuntu/flyte/my_project/workflows/ODS_TRANSACTIONS.csv',
csv2_path: str='/home/ubuntu/flyte/my_project/workflows/ods_customers.csv',
csv1_columns: List[str]=['ACCOUNT_ID', 'PRODUCT_TYPE', 'TRANSACTION_DATE', 'CATEGORY_NAME', 'AMOUNT'],
csv2_columns: List[str]=['ACCOUNT_ID', 'SAVINGS_ACCOUNT_ID'],
group_by_columns: List[str]=['PRODUCT_TYPE', 'SAVINGS_PRESENT', 'CATEGORY_NAME', 'TRANSACTION_YEAR_MONTH']) -> dict:
# Read and transform CSV files
df1 = read_and_transform_csv(file_path=csv1_path, selected_columns=csv1_columns)
df2 = read_and_transform_csv(file_path=csv2_path, selected_columns=csv2_columns)
return merge_and_aggregate(df1=df1, df2=df2, group_by_columns=group_by_columns)
freezing-airport-6809