<#4424 [BUG] Getting started: FlyteScopedUserExcep...
# flytekit
a
#4424 [BUG] Getting started: FlyteScopedUserException Issue created by mmathys Describe the bug I ran all the instructions in the getting started guide. However, I encountered the following error when running
pyflyte run example.py training_workflow --hyperparameters '{"C": 0.1}'
Copy code
FlyteScopedUserException: 'target'                                                                                                                                                                                                                                           
Failed with Unknown Exception <class 'KeyError'> Reason: 'Encountered error while executing workflow \'example.training_workflow\':\n  "Error encountered while executing \'training_workflow\':\\n  \'target\'"'
'Encountered error while executing workflow \'example.training_workflow\':\n  "Error encountered while executing \'training_workflow\':\\n  \'target\'"'
I also applied the
fsspec
hotfix as described in #4414:
Copy code
pip install fsspec<2023.10.0
Expected behavior I expected the getting started example to run without errors when running the command:
Copy code
pyflyte run example.py training_workflow --hyperparameters '{"C": 0.1}'
Additional context to reproduce Code from getting started for reference
Copy code
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.linear_model import LogisticRegression

import flytekit.extras.sklearn
from flytekit import task, workflow


@task
def get_data() -> pd.DataFrame:
    """Get the wine dataset."""
    return pd.DataFrame()

@task
def process_data(data: pd.DataFrame) -> pd.DataFrame:
    """Simplify the task from a 3-class to a binary classification problem."""
    return data.assign(target=lambda x: x["target"].where(x["target"] == 0, 1))

@task
def train_model(data: pd.DataFrame, hyperparameters: dict) -> LogisticRegression:
    """Train a model on the wine dataset."""
    features = data.drop("target", axis="columns")
    target = data["target"]
    return LogisticRegression(max_iter=3000, **hyperparameters).fit(features, target)

@workflow
def training_workflow(hyperparameters: dict) -> LogisticRegression:
    """Put all of the steps together into a single workflow."""
    data = get_data()
    processed_data = process_data(data=data)
    return train_model(
        data=processed_data,
        hyperparameters=hyperparameters,
    )
Screenshots No response Are you sure this issue hasn't been raised already? ☑︎ Yes Have you read the Code of Conduct? ☑︎ Yes flyteorg/flyte